Binomial Coefficients and Zero-Sum Ramsey Numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On zero-sum Ramsey numbers - stars

Caro, Y., On zero-sum Ramsey numbers--stars, Discrete Mathematics 104 (1992) l-6. Let n 3 k 2 2 be positive integers, k ( n. Let H, be the cyclic group of order k. Denote by R(K,,,> Z,) the minimal integer t such that for every &-coloring of the edges of K,, (i.e., a function c : E(K,)+ hk), there is in K, a copy of K, n with the property that CeeE(k, ) c(e) = 0 (mod k). Answering a problem rai...

متن کامل

Diagonal forms and zero-sum (mod 2) bipartite Ramsey numbers

Let G be a subgraph of a complete bipartite graph Kn,n. Let N(G) be a 0-1 incidence matrix with edges of Kn,n against images of G under the automorphism group of Kn,n. A diagonal form of N(G) is found for every G, and whether the row space of N(G) over Zp contains the vector of all 1’s is determined. This re-proves Caro and Yuster’s results on zero-sum bipartite Ramsey numbers [3], and provides...

متن کامل

The characterization of zero-sum (mod 2) bipartite Ramsey numbers

Let G be a bipartite graph, with k | e(G). The zero-sum bipartite Ramsey number B(G,Zk) is the smallest integer t such that in every Zk-coloring of the edges of Kt,t, there is a zero-sum mod k copy of G in Kt,t. In this paper we give the first proof which determines B(G,Z2) for all possible bipartite graphs G. In fact, we prove a much more general result from which B(G,Z2) can be deduced: Let G...

متن کامل

Catalan Triangle Numbers and Binomial Coefficients

The binomial coefficients and Catalan triangle numbers appear as weight multiplicities of the finite-dimensional simple Lie algebras and affine Kac–Moody algebras. We prove that any binomial coefficient can be written as weighted sums along rows of the Catalan triangle. The coefficients in the sums form a triangular array, which we call the alternating Jacobsthal triangle. We study various subs...

متن کامل

Binomial Coefficients , Catalan Numbers and Lucas Quotients

Let p be an odd prime and let a, m ∈ Z with a > 0 and p ∤ m. In this paper we determine p a −1 k=0 2k k+d /m k mod p 2 for d = 0, 1; for example, p a −1 k=0 2k k m k ≡ m 2 − 4m p a + m 2 − 4m p a−1 u p−(m 2 −4m p) (mod p 2), where (−) is the Jacobi symbol and {u n } n0 is the Lucas sequence given by u 0 = 0, u 1 = 1 and u n+1 = (m − 2)u n − u n−1 (n = 1, 2, 3,. . .). As an application, we deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1997

ISSN: 0097-3165

DOI: 10.1006/jcta.1997.2812